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The JOREK-STARWALL code
for halo current modelling
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The JOREK-STARWALL code for halo current modelling
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The JOREK-STARWALL code for halo current modelling

EM boundary conditions

Reduced MHD, the E-field is

E = —&nggb — F()vpolu

5’,5@@ has resistive wall free-boundary conditions

Ideal wall BCs for poloidal E-field (1 = ()

Poloidal currents calculated from
force balance J «w B = Vp

Strong assumption. Poloidal
currents do not decay in the
wall (infinite conductivity in
the poloidal direction)
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2D VDE benchmark with
M3D-C1 and NIMROD
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2D VDE benchmark with M3D-C1 and NIMROD

VDE based on the NSTX #139536 discharge
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2D VDE benchmark with M3D-C1 and NIMROD

halo current [kAlmz]

VDE based on the NSTX #139536 discharge
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Understanding 2D halo currents
at ITER (15 MA/ 5.3T)
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Halo current different regimes

Hot VDE regime (7w < Tp)
‘O ~ cte during VDE

ldeal wall regime (Tp < Ty)

0 Q0 [D. Kiramov 2017 PoP]

7 = Current resistive decay time
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Parametric scan in CO time

Plasma resistivity is prescribed as a flux function
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Scan in CO time (scaling plasma resistivity profile)
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Scan in CO time (scaling plasma resistivity profile)
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Halo current different regimes

Hot VDE regime (7w < Tp)
o Cold halo (1, < Tw)
a Hot halo (7w < 71)
Ideal wall regime (7, < 7,)

i Cold halo (m < 1)
a Hot halo (Tp <)

also discussed in [Boozer PoP 2013]

7 = Current resistive decay time
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + cold halo  (Th < Ty K Tp)

Currents are lost in wall and halo
faster than in plasma core

Currents are re-induced in plasma
edge (large current densities)

Big drop of edge safety factor
"‘Ois largely conserved (1 ©® ®)

Potential destabilization of
external kink modes
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo (7w < T ~ Tp)

Toroidal current is transferred into
the halo region as the plasma
moves vertically

Halo currents stabilize vertical
motion

After stabilization, motion is given
by resistive decay of core + halos
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo (7w << 7, ~ Tp)
Halo resistivity scan
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo
Halo resistivity scan
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo

Halo resistivity scan
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo (7w < T ~ Tp)

Halo width scan
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo

Halo width scan
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Ideal wall regime  (Tp < Tw)

Halo resistivity scan
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down vertical motion
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